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ABSTRACT

We study the influence of the choice of template in tensor-
based morphometry. Using 3D brain MR images from 10
monozygotic twin pairs, we defined a tensor-based distance in
the log-Euclidean framework [1] between each image pair in
the study. Relative to this metric, twin pairs were found to be
closer to each other on average than random pairings, consis-
tent with evidence that brain structure is under strong genetic
control. We also computed the intraclass correlation and asso-
ciated permutation p-value at each voxel for the determinant
of the Jacobian matrix of the transformation. The cumula-
tive distribution function (cdf) of the p-values was found at
each voxel for each of the templates and compared to the null
distribution. Surprisingly, there was very little difference be-
tween CDFs of statistics computed from analyses using dif-
ferent templates. As the brain with least log-Euclidean de-
formation cost, the mean template defined here avoids the
blurring caused by creating a synthetic image from a popu-
lation, and when selected from a large population, avoids bias
by being geometrically centered, in a metric that is sensitive
enough to anatomical similarity that it can even detect genetic
affinity among anatomies.

Index Terms— brain, image analysis, Magnetic Reso-
nance Imaging

1. INTRODUCTION

The choice of a common template space is essential for
many analyses comparing or integrating neuroanatomical
data across subjects. Among these methods, tensor-based
morphometry (TBM) computes local statistical differences in
brain anatomy between groups of subjects, based on defor-
mations that align scans to a common template. A set of MR
images is nonlinearly registered to a reference image, either
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from one of the individual subjects [12] or an average image
computed from a subset of the data [13, 17]. The Jacobian
matrices J resulting from the deformation are computed and
statistically analyzed to obtain a map of group differences at
each voxel, or of the effects of covariates on anatomy (e.g.,
age or genetic risk for disease).
In the most commonly used version of TBM [22, 2],

statistics at each voxel are computed from the determinant of
the Jacobian matrix, which stores information on regional dif-
ferences in volumes of brain substructures. However, in [16],
we showed that multivariate statistics on the deformation (or
strain) tensors

S =
√

JT J (1)

outperformed this scalar measure for detecting morphomet-
ric brain differences between HIV/AIDS patients and healthy
controls. As the statistics were computed on the deformation
tensors, a mean template was designed in [17] that defined the
average deformation as the mean of the deformation tensors
at each voxel, computed in the log-Euclidean framework [1].
The control brain already closest to the average was moved by
gradient descent in the direction of this average. In a 2D anal-
ysis of the corpus callosum in HIV/AIDS patients, the aver-
age template constructed in this way did not differ in detection
power (measured by effect sizes in TBM) when compared to
that of using a single individual brain as template.
Construction of a mean anatomical template, in a strictly

defined mathematical sense, may reduce the bias induced by
registering images to an individual control subject. Even so,
the features and anatomical boundaries are typically sharper
in individual brain images, so using them as a template may
allow for a more accurate registration, which may in turn im-
prove detection power in a study of registration mappings. In
[6], the template from an individual control outperformed the
average ICBM53 atlas brain as a registration target image for
TBM, in the sense that more widespread atrophywas detected
in HIV/AIDS, with greater effect sizes at each voxel. In most
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studies, the individual brain is usually selected by visual in-
spection as one that is visually representative of the sample.
However, few studies to date have selected individual brains
based on mathematical criteria or examined the influence of
the chosen target brain on the statistical results.
As our statistics are computed from the deformation ten-

sors at each voxel, one potential template optimization strat-
egy is to choose an individual brain which is already the most
average among the subjects, with respect to a metric. This
approach is similar in philosophy to that used in [13], where
an optimized template was selected as the brain closest to the
average of the deformation fields. Here, we instead define the
total distance between the image set and the template image
i, denoted Ei, as the distance d(., .) to all the deformation
tensors Si generated though the transformation from i to all
other images in the data set (Id denotes the identity):

Ei = Σi

∫
d(Si, Id)2 (2)

As an application of this approach, we examine brain MRI
data from twins. Twin data has been used to examine ge-
netic influences on brain structure using TBM [15, 5], diffu-
sion tensor imaging (DTI) [14], high angular resolution diffu-
sion imaging (HARDI) [7] and using surface based analyses
of cortical gray matter density [23, 24]. Here we selected 10
pairs of monozygotic twins (MZs), and examined the rela-
tionship between (1) the templates distance Ei to the rest of
the sample, and (2) the final statistics. We used the voxel-
wise intraclass correlation as a measure of resemblance be-
tween genetically identical twins, as this would be a statistic
for which registration errors - which may depend upon the
choice of registration target - may deplete the measured cor-
relation, sacrificing statistical power. To avoid assuming a
Normal distribution for the resulting Jacobian determinants,
p-values were computed from a permutation distribution at
each voxel [20].

2. DATA

Subjects included a total of 10 pairs of MZ twins (4 male
pairs and 6 female pairs) scanned as part of a 5-year imaging
study of 1150 twins. At the time of testing, the twins were
21-27 years old (mean age 23.8 years). All MR images were
collected using a 4 Tesla Bruker Medspec whole body scan-
ner (Bruker Medical, Ettingen, Germany) at the Center for
Magnetic Resonance (University of Queensland, Australia).
Three-dimensional T1-weighted images were acquired with
an inversion recovery rapid gradient echo (MP-RAGE) se-
quence to resolve anatomy at high resolution. Acquisition pa-
rameters were as follows: inversion time (TI)/repetition time
(TR)/echo time (TE) = 1500/2500/3.83 msec; flip angle =15
degrees; slice thickness = 0.9 mm, with an acquisition matrix
of 256 x 256 x 256. All images were first spatially normal-
ized to the ICBM-53 standard brain imaging template [10] by

a 6-parameter (3 translations, 3 rotations) transformation.

3. METHOD

As the deformation tensors do not form a vector space under
the usual operations of matrix addition and scalar multiplica-
tion, all computations were performed in the log-Euclidean
framework [1]. The distance between two deformation ten-
sors S1 and S2 is then given by

d(S1, S2) = || log S1 − log S2||,

where ||.|| denotes a norm, and log is the matrix logarithm.
Following [1], we will use

d(S1, S2) = (Trace(log S1 − log S2)
2)1/2. (3)

Thus, taking into account Eq. 3, Eq. 2 becomes

Ei = Σi

∫
|| log Si||2d3x = Σi

∫
Tr(log S2

i )d3x (4)

To compute the displacement fields, we used a fluid reg-
istration algorithm [18, 9] with a summed-squared-difference
intensity-based cost function. In this approach each brain im-
age is driven into the shape of the template using a linearized
Navier-Stokes flow, driven by a distributed internal force that
causes the intensity similarity to be optimized. The registra-
tion was accelerated using a fast filter, based on the Green’s
function of the linear elasticity operator, first designed in [3].

4. RESULTS

In Figure 1, we show the distance Eij from subject i to j,
for each of the individuals in the study. In most cases, mem-
bers of a twin pair fall close to each other when compared
to their distances to other subjects. The brains of monozy-
gotic twins are in fact anatomically more similar than those
of random pairs of individuals [17], so our distance may pro-
vide a measure of anatomical resemblance, which is sensitive
to genetically mediated similarities in brain structure. Total
distances Ei for each subject i are shown in Table 1.
Next, we computed the voxelwise permutation p-values

for the intraclass correlation, between twins, for regional
brain volumes, as estimated from the Jacobian determinants
of the deformation mappings. We repeated this analysis, us-
ing each subject in turn as a template. In Figure 2, we show
the cumulative distribution function (cdf) for the p-values
that we obtained. For samples from a null distribution, the
cdf should fall, on average, on the x = y axis. Cdfs based
on using each of the 20 subjects as a registration target are
shown in Fig. 2a. In Fig. 2b, we compare the cdfs from a
typical twin pair, and in Fig. 2c, those of the brains which
have the smallest and largest values of Ei. The cdfs for the
twins fall much closer to one another, as expected.
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Fig. 1. Distance Eij from each of the twins to all others. The x-axis
labels the twin, and the y-axis its distance Eij to each of the other
twins (plotted as colored o’s). The blue x in each column represents
the distance to the second twin in the pair. In general, each subject is
anatomically closer to their twin counterpart than to other randomly
selected individuals from the sample, in line with the hypothesis that
there are strong genetic influences on brain structure. Though the
log-Euclidean distance is symmetric, Eij �= Eji as the registration
algorithm is not inverse-consistent, and furthermore, the distances
are computed on masked templates, and thus depend on the brain
size of each individual template.

5. DISCUSSION

This work is complementary to other efforts generating mean
neuroanatomical templates for computational anatomy. Many
efforts have focused on defining minimum mean-squared er-
ror (MMSE) anatomical templates in the sense that they devi-
ate least from other anatomies in some intensity-based metric,
or in some deformation norm (such as the LDDMM metric
on the space of diffeomorphisms [19]), or a combination of
both; even time-varying averages can be defined [11] as can
cross-subject averages of multi-modality data, using informa-
tion present in all modalities for registration.
Although these resulting templates are geometrically cen-

tered with respect to a metric, the resulting brain images typ-
ically do not retain sharp features, especially at the cortex,
where the intensity averaging degrades cortical geometry to a
great extent, no matter how well cortical anatomy is aligned.
We therefore used tensor based deformation norms to select
a candidate target brain, without resampling it or averaging
it with other images to further minimize the norm. This ap-
proach does not require the computation of a new synthetic
image as a registration target, but merely selects a represen-
tative image using a mathematically defined norm, retaining
high-contrast features and boundaries that typically assist reg-
istration.
A good metric of anatomical difference should be sensi-

A1 0.8087 A2 0.8760
B1 0.9073 B2 1.3852
C1 1.3295 C2 1.1267
D1 1.1868 D2 1.0022
E1 0.7677 E2 0.9642
F1 0.8830 F2 0.8420
G1 0.9748 G2 1.4338
H1 0.8716 H2 0.8977
I1 0.9293 I2 0.8662
J1 0.8538 J2 0.9446

Table 1. Total distance Ei for each twin. The letter in each name
represents the pair, and the number is the twin number, 1 or 2.

tive to the fact that twin brains resemble each other to a higher
degree than random pairings. Thus, the twin design was used
here to help establish that our proposed deformation metric,
based on deformation tensors in a log-Euclidean space, is a
valid measure of anatomical resemblance. In future, it would
be interesting to establish further the heritability of Eij , ap-
plying it to the search for genes that influence brain shape by
fitting structural equation models, at each image voxel, to the
maps of the energy density in each subject.
Ultimately the best template for optimizing multivariate

statistics depends on the norm used in the statistical analysis,
as well as the trade-off between computational efficiency, the
complexity of the registration approach, and the power gained
by improved registration relative to the power available with
poorer (e.g., linear) registration. The results obtained here
may be further improved by the use of a registration algo-
rithm that explicitly regularizes the log-transformed deforma-
tion tensors, such as those found for instance in [5] and [21].
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Fig. 2. Cumulative distribution of p-values for the voxelwise intra-
class correlation versus the corresponding cumulative p-value that
would be expected from a null distribution. Top: cdfs for all subjects
in the study. Middle: cdfs for a typical twin pair. Bottom: cdfs for
the brains with the highest (green) and lowest (blue) distances Ei

to all the other brains in the study. Dotted line: x = y curve (null
distribution). There is no significant difference between the ”most
average” and the ”least average” templates in the study.
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